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The physical behaviour of the diffusion equation is examined, and shown to be a conse- 
quence of appropriate mathematical properties of the diffusion operator. Amongst these, the 
familiar decay of extrema, a consequence of tie maximum principle. is given particular 
attention. The development of spatial and temporal differencing to preserve this property, to 
be called extremal, yields solutions which preserve positivity and converge uniformly to the 
‘steady state. The general construction of extremal algorithms is described for use in a two- 
level system. The use of weights to improve the accuracy of temporal integration is discussed. 

The inclusion of diffusion processes into the body of large hydro-dynamic codes 
has stimulated the use of implicit solutions to the diffusion equations which converge 
in some well-behaved fashion onto the equilibrium (uniform) solution. Such solutions 
are clearly of value since it frequently happens that regions in which diffusion 
processes are extremely rapid are of limited physical interest. One is thus faced with 
the partial differential equation equivalent of the stiff equation problem in ordinary 
differential equations. In a similar fashion one seeks solutions that are stable, and 
convergent for the fast processes of little interest, yet accurate for the slower ones. 
The restrictions of computer store and CPU time imposed by the mesh of a large 
fluid code necessitate that no more two time levels of data be stored simultaneously. 
In consequence one is forced to consider two-step integration schemes in which the 
data is advanced from one time level to the next. In the course of this time-step the 
characteristic rate coefficients are assumed to take constant values varying in space, 
and from time-step to time-step. As a result of its convergence property for large 
time-steps, fully implicit-or Laasonen-temporal differencing [ 1 ] is usually 
preferred to the split-time-step-or Crank-Nicholson scheme-despite the loss in 
small order accuracy introduced thereby, to avoid the spurious oscillation inherent in 
the latter procedure. 

The spatial differencing of the diffusion equation is usually required to satisfy 
various constraints inherent within the governing differential equatipn. These are 
usually consistency 11 ] and conservatism. More recently Kershaw 12 ] has drawn 
attention to the need for the matrix representing this difference-the diffusion 
matrix-to be non-positive definite. We shall show that this condition essentially 
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expresses the second law of thermodynamics, and in consequence the mathematics! 
stability of diffusion [3]. A hitherto neglected (in this context) physical property of 
diffusion is contained in the maximum principle [3], namely, that extrema decay in 
time ]4]. We shall examine the form of spatial and temporal differencing necessary 
for the numerical solution to satisfy this condition, i.e., to be extremal. Laasonen [ 1 j 
has drawn attention to this property for fully implicit differencing in an isotropic 
medium on an orthogonal mesh, but in the more genera1 case the properties of an 
extremal form have not been considered. 

The recent major advance in tackling implicit problems of this type. the 
development of the ICCG sparse matrix solving routine by Kershaw (5 ] has 
generated a need for improvements in the existing finite difference representation in a 
generalised geometry. In particular two problems exist: 

(a) Convergence for large rates requires fully implicit temporal differencing, 
with relatively poor accuracy. On the other hand the improved accuracy given by 
split-time-step schemes necessitates the use of limited time-steps. 

(b) The spurious generation of occasional negative values, which violate 
essential physical constraints, is an unavoidable occurence in calculations with 
existing methods. These must be removed by an ad hoc procedure (which normaily 
violates conservation) such as “reset to zero.” 

The application of extremal principles is shown to generate algorithms to overcome 
both these difficulties. 

In this paper we first examine the mathematical properties of the fundamental 
diffusion equation. In this our approach is similar to that of Kershaw j2]. who 
derived conditions for the less general symmetric case. The close relationship of this 
approach with the theory of stiff equations is emphasided by considering the spatial 
differencing (thereby yielding the diffusion matrix), independently of the temporal, 
and allowing the conditions on the diffusion matrix necessary to re-produce those of 
the exact equations to be determined. Implicit temporal differencing, and its re!ation 
to the extremal principle, is examined separately. 

To examples of extremal schemes are constructed. In each case the simplest finite 
difference representation is not extremal. In one case resourse to the known physicai 
behaviour allows the diffusion matrix to be made extremal. In the second no general 
consistent extremal representation of the diffusion matrix exists: under restricted 
conditions it is therefore necessary to introduce an extremum iimited flux term to 
treat this problem. It is believed that the two methods outlined in these examples are 
sufficient to cover all such problems. 

Finally the use of extremum limited solutions to generate weights for the temporal 
integration is shown to allow split-time-step differencing for small rates and fully 
implicit for large. This approach is very similar to that devised for integrating 
positivity maintaining rate equations [ 6 ]. 
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THE DIFFUSION EQ~~ATION AND ITS PROPERTIES 

The diffusion of some intrinsic (real) quantity, E, for example, specific energy, is 
governed by an equation of the form 

II 
; (a&) = 2(E), (1) 

where LZ is a real, positive valued (often time independent) function, and G(E) a 
differential operator-the diffusion operator-of the form 

S(c) = v . q, (2) 

where q is the diffusive flux, given by 

q = -r . vc, (3) 

and s is the diffusivity tensor. 
We consider the behaviour of the above equation within an irreducible isolated 

enclosure, such that there is no flux through the walls: 

!t. vc: In = 0, (4) 

where n is normal to the bounding surface s. 
In general, the diffusion operator may be considered as the sum of symmetric, US, 

and anti-symmetric, gA, components, such that GZS is self-adjoint, and GA equal to 
minus its adjoint. For example, in the case of diffusion in a magnetic field: 

K * VC = K,,VIE + K FL& + K;, A VC, (5) 

where the suffixes 11, I and A have their usual meaning, parallel, perpendicular and 
cross product to the magnetic field [ 71. The first two terms are clearly symmetric, 
and the third anti-symmetric. 

The diffusion operator is dlnrential, i.e., if E is constant throughout space, of value 
CO, 

c2&o=0 (‘3) 

and E is constant in time. The diffusion equation is conservative: 

Two further important constraints on the diffusion operator are discussed in 
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Appendix 1. It is a consequence of the second law of thermodynamics that the 
operator must be non-posithe definite in the sense: 

Furthermore the familiar picture of diffusion in terms of a decay of extrema is 
contained in the extremal condition: namely, that if a is independent of time 

Max(s(t,,), ~~1 > Max(e(t)] > Min(s(t)J > Min(E(ti), c*], P? 

where t > t,. Max and Min are the largest and smailest values of the set denoted. 
respectively, and ch are the boundary values of 6 over the interval t, to z. TSs 
condition ensures the essential positivity of the physical quantity c during diffusion. 

The extremal condition is stronger than the previous one, for an extremal operator 
has eigenvalues whose real part must be non-positive, and therefore if not defective 
must be non-positive definite. We may remark that one eigenvalue is necessarily zero 
since the operator is differential and corresponds to the steady state. 

Thus far our discussion of the properties of diffusion has been quite general in that 
arbitrary forms of the system parameters a and K are allowed. In a finite difference 
scheme the integration of Eq. (1) follows a step-by-step procedure integrating from 
time-step to time-step, the system parameters a and K being held constant during this 
time interval. In the following we assume that such a procedure is to be adopted. and 
therefore investigate the integration properties under the assumption that a and K are 
temporal constants, i.e., we are considering integration over one time-step. The 
constants a and K will of course change their values from time-step to time-step. 

THE DIFFUSION MATRIX 

Since the diffusion equation is linear in C, the spatial finite difference of the 
diffusion equation takes a linear (matrix) form: 

where ci is the value of E at some point ri: A is a real positive diagonai matrix, 
independent of time? whose components Aii = a(ri). D is the real diffusion matrix, a 
consistent representation of the diffusion operator 2%. Since 2 is defined within an 
irreducible space, D is itself irreducible. 

The matrix D can be split into two components corresponding to the equiva!ent 
parts of 8. Thus if V is a real positive diagonal matrix whose component Vfi is the 
volume of the cell surrounding the point rlr and the matrix: 

B= VD. (111 
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The representation B, of the symmetric parts of 9 must, in the limit as the mesh is 
relined, satisfy 

(12) 

for all vectors 6 and E. Hence if the representation is consistent B, must be symmetric 
to terms of lowest order of the mesh spacing. In practice this implies that B, must be 
symmetric. Similarly the anti-symmetric term 9A must have an anti-symmetric 
representation B, . 

The representation must be d@rential, i.e., if ci = aj = e0 for all i and j then 

and (13) 

23 D, = y B, = 0. 
j 7 

which ensures the existence of a steady-state solution, and that D is singular. 
(Appendix 2, Lemma 1.) We shall call any matrix satisfying (13) a differential 
matrix. 

The matrix representation is conservative if 

d’i-@,.+)’ &E~=O 
dt + z 

(14) 

for all tj. Therefore 

K’ B,j=O. (15) 

This result is clearly equivalent to (13) if the matrix is purely symmetric 121. Any 
matrix satisfying (15) is called a conservative matrix. 

The matrix equation (IO) is clearly stable if the eigenvalues of (,4 -ID), namely, 1, 
have real parts satisfying Re(A) < 0. This condition is ensured if the matrix B is non- 
positive definite,’ a condition equivalent to that for the operator 5Z. Let ,4 = @ + iY 
be an eigenvector of (A --ID) with eigenvalue ). = 4 + ity. Consider: 

(A*,BA)=(@,B@)+(!P,B!P)+i[(@,B!P)-(Y,B@)] 

=n(/i*,(VA~)=(~+irl/)f(~,(VA)~)+(Y,(VA)Y3]. (16) 

’ We note that these definitions of “definiteness” involve a gencralisation of the usual form to asym- 
metric matrices. 
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But (VA) is a positive real diagonal matrix and is therefore positive definite. Hence 

W/l) =d = I(@,B@) + (Y, BY)I/I(@, (VA)@) f (K (VA)y?,’ (17) 

and is non-positive if B is non-positive definite. If (A ‘D) is not defective this is also 
a necessary condition. 

We defer a discussion of the extremal properties until later, since its form is more 
appropriately derived in connection with temporal differencing. We may, however? 
remark that it may be proved by a similar analysis that Eq. (10) is extremal if and 
only if the matrix D is differential and non-negativity maintaining (i.e., if E(O) > 0. 
then c(r) > 0 for ali t > 0), i.e., D is the negative of an M-matrix form’ 16j. 

THE TEMPORAL FINITE DIFFERENCE 

The set of linear equations (lo), forms a stiff system. If the matrix D is defined 
physically we have seen that the eigenvalues of this matrix (A- ‘0) have non-positive 
real parts, so that the solutions are decaying. A general two-step form of Eq. (10) is 

E = [A - 0D At] --’ (A + (1 - 8)D At] co, (181 

where 6’ is the value of E at time (t -At), and 8 is an implicitness parameter. 
Assuming the matrix (A -‘D) is not defective we may solve this equation formal!y in 
terms of the projections C, of the vector E onto the eigenvectors /i, of (A - ‘D). 

C,=(l -fhl,At)- l\l +(l -8)A,Atj (2;. (19) 

For stability we require that the projections C, be bounded as the number of 
repetitions of Eq. (18) tends to infinity. Thus if D is time independent 

where 0, and w, are the real and imaginary parts of the eigenvalues i.,, respectively. 
This may be recognised as a generalisation of the usual stability condition for 
diffusion. Noting that the above inequality, cannot be satisfied as At -+ 0 if Re(l.) ? 0 
(anti-diffusion) we conclude that the two-step system is unconditionaily stable if and 
only if (A ‘D) has only non-positive real part eigenvalues and f < 8 < 1. 

it is clear that unless 8= 1, the solution C, does not decay uniformly, as required. 
by the exact solution, but may oscillate for large values of At. Such oscillations will 
be inhibited if the extremal condition can be applied. 

’ An M-matrix is by definition non-singular [8 1 but D is singular. We therefore use the abow term to 
describe such matrices. 
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EXTREMAL FORMS 

We define an extremal operator, G, as one whose operation on a vector set co, 
yields a set E: 

E = GE’ 

whose values are extremal (9) with respect to the set so. 

(21) 

THEOREM. A linear operator is extremal if and only if it is both differential (i.e., 
if co is a uniform set, then E = 6’) and non-negativity maintaining (i.e., if co > 0 then 
E > 0). 

Consider two vector sets a0 and 6’ such that a0 > do, therefore since G is non- 
negativity maintaining : 

E = GE’ > GdO = 6. 

Let 6’ be a uniform vector whose components are all equal to the smallest component 
of so, 6’ = Min(c’), and y” a uniform vector equal to the largest components of so, 
y” = Max(s’). If G is a differential operator: 

y = Gy” = y” = Max(c’), 

6 = G6’ = 6’ = Min(.s’). 

Therefore since y” > so > 6’ 

y = Max(s’) > E > Min(c’) = 6, 

i.e., the solution is extremal. 

(22) 

It is clear that an operator, which is extremal, must be differential and non- 
negativity maintaining, and the above condition is proven. 

For a two-step finite difference representation (IS), G has a matrix form 

G=F-‘E (23) 

when E is an explicit operation: 

E=I+ {(I -@)A-‘Ddt} (24) 

and F an implicit one: 

F=I- {BA-‘Ddt}, (25) 

where I is the identity matrix. It is readily shown that G is differential if 
(E - F) = A- ‘D At is a differential representation, i.e., if D satisfies Eq. (13). If G is 
non-negativity preserving and E is non-negative (i.e., if so > 0, then E = EC’ > 0), then 
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F is monotone 191 (i.e., if co >, 0, then E = F -‘co > 0); and similarly since E and F 
commute, if F is monotone then E must be non-negative. This reciprocity occurs 
naturally within the matrices E and F, for if E is non-negative, all its components, 
E, > 0 and 

D, > 0: ifj, 

Dii=- x I$,>-&/{(l -0)dt). (26) 
jti 

D is therefore the negative of an M-matrix form. When D has this form, F is an :M- 
matrix and therefore monotone IS]. 

In general, D is a local matrix such that it has non-zero components between only 
a restricted set of mesh points, which we call neighbours. If D is a local M-matrix 
form. then the operation G is locally extremal. Thus if the set of values so and E at the 
neighbours of i is ci, then 

Min(&, ~9) < ci < Max(<,, E!), (27) 

a condition closeiy related to the more general maximum principle of the governing 
differential equation. This result follows since 

Fii~i = EiicP + y  (EijCJ + lf’,( EJ) 
jzi 

” E, + lFijl 
,Yi 

Max(<i, E)) 

and 

Fii = Eii + \’ (Eil + IFijI). 
.YTi 

An extremal operator is never divergent, and therefore the associated matrix 
(A ..‘D) has non-positive real part eigenvalues, i.e., it is derived from a Lyapunov 
semi-stable matrix. 

We may illustrate these results by the simple example of one dimensional diffusion 
on a uniform Cartesian mesh with constant diffusivity, K, for which the only non-zero 
elements are 

(A -.‘D)i.i, i = (A -.‘D)i,i-, = K, (A - ‘D)i.i = -2K. (28) 

An explicit calculation (0 = 0) is extremal only if K dt < f, which is also the well- 
known stability condition [ 11. For a split-time-step calculation (0 = i), the operation 
is unconditionally stable, (20), but extremal only if KAY < 1, reflecting the well-known 
“overshoot” of this algorithm. Fully implicit schemes (6 = 1) are unconditionally 
extremal, and, of course, stable. 

The M-matrix form of D is clearly a sufficient condition that G be extremal for a 
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restricted range of the implicitness parameter 0. It is not, however, necessary; for 
example, a monotone matrix is not necessarily an M-matrix 191; indeed we shall 
consider later a case where the diffusion matrix, D, cannot be cast into M-matrix 
form but yields a monotone operation, F. In this case the explicit form, E, is not 
positively maintaining, and the extremal form must be fully implicit (0 = 1). The M- 
matrix form of D is however a very useful ‘?recessary” condition in a general sense 
providing a least restrictive condition on the form of D suitable for rapid test during 
repetitive calculation, whilst still remaining extremal. 

Some general properties of the implicit operator, F, may be derived from the 
theorems in Appendix 2. In particular it follows from Theorem 1 that if D is non- 
positive definite F is non-singular, and a solution of (21) exists. Furthermore from 
Theorem 2 it follows that as dt + 00, the matrix F is monotone, and converges to the 
steady state, provided D is differential and conservative. Thus the fully implicit form 
is always extremal provided the time-step, At, is sufficiently large. 

The matrices E and F may be defined in a number of ways equivalent to Eqs. (24) 
and (25), of which the following is particularly useful: 

E=M+ {(l -0)BAtj Pa) 

and 

F=M- {OBAt}, Wa) 

where B is given by (11) and M = A V is the diagonal cell “mass” matrix. 

EXTREMAL FINITE DIFFERENCE REPRESENTATIONS 
IN ORTHOGONAL Two DIMENSIONAL GEOMETRIES 

We consider the finite difference representation of the diffusion operation with both 
symmetric and anti-symmetric terms in a Cartesian (r, z) space with either planar or 
cylindrical symmetry. The diffusion flux may be written: 

q=--KoVE-icK1~ AVE, (29) 

where fi is a unit vector perpendicular to the plane of the coordinates. The 
differential equation (1 ), takes the form 

(30) 

where F = 1 or r for planar or cylindrical geometry, respectively. 
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The difference form may be found by a standard centred-difference about the 
centre (risjzi.,) of the cell (i, j). Thus, for example, 

where ci,j is the value of E at the mesh point (T~,~, 2i.j): the values of terms at inter- 
mediate points being defined by a suitable interpolation. 

Similarly : 

a& (Ei.j, 112 - Ei,j-. I;2 ) 1 (Ei,j,l - Ei.j-l) 

75 = (Zi,.f r I.‘?, - zi,,j-I,*) = T  (zi,j- I!2 - 'i.j 1'2)' 

(21) 

Since the volume of the cell V 
- 

cC,l),Ci.j) = ‘i,j(‘iT 1;Z.j - rt- l/2.1 )(Zf.j- 1’2 - zi.1 $2) we 

obtain the matrix. B. whose only non-zero components are 

Btf.j).ti L 1-j) = (Ko)it I,fz,j?iL *,jtzt.j- *I2 - zi.j U2)I(‘i- :.j - ri.j) 

- $\(fK,Kl)i,jT I - (‘K,)i.j-lIt 

B(j.j).(i.j-i)=(Ic,,>,.;, I/Z T;:.j(Tt,I/Z.j-ri-r,2.i)!(Z‘.i-I 1 -‘i..iJ 

+ f[(FK,)i-I..i- (‘KI)~ -I.~I* 

B(i.j).(i. i,j) = CKo)j-1,‘2.j l’i I.jCzs.j r I.‘2 - zi.j 1!2)/Cri.j - ri 1.j) 

+ t((fK,)i,j+~ - (‘KI)i.j-lI? 

B(i.,),(i.j- I) = (“o)i,j II2 &qj(rlT 112.J - ‘i .- I!*.ill(zi.j - =i.j- II 

-~[(FKI)L. r.jI - [(“lK,)i-l.jIy 
B(isj).((,j) = - (zi,j+ I/2 - zi,j -1;2)lyi+ l.itKD)i+ l!*,jl(‘i+ 1.j - ‘id) 

+ Fj. i,jlKO)i I!*.,lCri.j - ri- l..i)l 

- 
‘:.jtri4 I/Z.j- ‘i-ll2.j )\(K~)i.,i : t.I/(Zi.j L I -- zi,;) 

t (K0)i.j. I:2/(Zi.j - 2i.j ,)I. (33) 

The matrix B is clearly both differential (13) and conservative (15), and from the 
derivation also consistent. It is not, however, an M-matrix, and therefore no: 
necessarily extremal. This defect is readily identified as associated with the anti- 
symmetric terms in Eq. (29). 

Examination of these terms shows that they have a similar form to those describing 
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advection, and suggests that they may be conveniently differenced by forward or 
backward differencing depending on the direction of the flux: thus, 

_ = (&i.j+ I - &I,.~) CT& 

a' ('i.j + I/* - zi.j- l/2> 

if B - 
5 @I) > 0 

= (‘i,j+ I/2 - zi.j- 112) 

otherwise. (34) 

The modified form of B is then 

Bti.j).Ci t I./) = tKO)i- li.*.j’;:- I,jCzi,jl I/Z - zi..j~ V2>/CriT I.j - ri.j) 

- t Min(oY [tFKIKl)i.j+ I - (rKl)i,j- II>? 

BCi,j).(i,j+ I) = CKO)i.j- l/2 Fi,j(yi+ 1/2,j - ri -l/2..i)l(zi.j k I - zi.j) 

+ t Max(O, I(FKl)i+ 1.j - (fxl)i I.jl>, 

BCi.j,,Ci - 1 .j) = CKO)i- Il2.j Fi - I,jtz,.j* I/2 - li.j- 1/2Y(‘i.j - ri- I. j> 

+ f Max(O, ((FK1)i.j’ 1 - (FK1)i.j.. I]): 

B(i,j),(i,j-I) = (%)i,j-I/Z ri,j(ri- lj2.j -ri-l,2.j)l(zi.j -zi-l.j> 

-4 Min(O, [(FKl)ir I.,- (+l),-l,jJ)v 

BCi.j),O.j) = - [BCi.j).ti+ 1.j) + BCi.j),Ci,jt I) •t BCi.jJ.ti- I .j) 

+ Bti,jl Ci j-1,1. , . (35) 

As before this term is differential and conservative, and can also be shown to be 
consistent. The error terms, are of lower order than those of the set (33). Against this, 
however, the modified set converges properly to a uniform state for large time-steps. 
It is therefore suggested that the set (33) be used unless one of the non-diagonal 
elements of B is negative, in which case the appropriate forward or backward 
differencing for that term be used (with care to ensure that conservation is main- 
tained). This algorithm, in a slightly modified correctly symmetrised form, has been 
extensively used by the author to treat diffusion in magnetic field [IO]. The 
advantages of the M-matrix form have been clearly demonstrated by the removal 
(with no ill effects) of a “fix to zero” check, which was formerly necessary to avoid 
occasional negative values arising in the calculation using the centred-difference form 
(33). 

EXTKEMAL FINITE DIFFERENCE REPRESENTATIONS 
IN NON-ORTHOGONAL Two DIMENSIONAL GEOMETRIES 

We consider the finite difference representation of the diffusion operator in a 
general non-orthogonal two dimensional co-ordinate system (k, r). The transformation 
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between this system and a Cartesian (R, 2) system is accomplished by means of the 
Jacobian : 

j=R,Z,-R Z 1 k, (36) 

where partial derivatives are denoted by sub-scripts; thus. for example. R, = ZR/Ck. 
The derivatives of a function f are given by 

v - = -(f,R, -@d/j. %Z (37) 

For simplicity we restrict our study to the case of an isotropic medium in which the 
diffusion operator is symmetric, and K is a scalar. The generalisation to non-isotropic 
systems is accomplished in a similar manner. 

We consider the flux balance of a cell centred at (k, I) with faces 6k and SI parallei 
to the local k and I axes, respectively. The area of the faces parallel to the 1 axis (k 
face) is 

S,=itJR,l& (38) 

where R” = 1 or R for planar or cylindrical geometries, respectively, and R is the 
position vector: 

R=Rfi+Z& (39) 

The unit normal to the k face in the direction of increasing k is 

fi, = (Z,a - R,z)/(R; i Z;,. (40) 

The total flux through the k face at (k + 6k/2) in the direction of increasing k is 

Qk+ = - lKSk ' vc10+dk,2) 

(41) 

Similarly the total flux through the 1 face at (I + &/2) in the direction of increasing I 
is 

Q,l = - + (Rk. R,E, - R, . R,eki 
I 

6k. (42) 
(/'b//2) 

The volume of the cell is fij 6k 61 so that the flux balance for the cell (k, /) is 

&a $6k 61= - (Qk+ - Qk.. ) - (Q:, - Q, ). (43) 
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Allowing 6k and 61 to proceed to the limit we obtain the differential form 

(R, . R,Q - R, . R,E,) 
1 

+z ” [F 0% - R,c&, - R, . W] 1 (44) 

is agreement with a direct calculation. 
We establish a finite difference representation in a similar manner, using centred- 

differences on the faces. Thus if a mesh is defined in (k, I) space such that k = K 6k 
and 1= L 6/, we define a cell (K, L) with centre integer values K and L, faces 
(K +f, L), (K,L i-t), (K-i,L) and (K,L -f), and corners (K +-& L +f), 
(K - f, L + i), (K - 5, L - 4) and (K t i, L -4). The quantities cK.,, are defined at 
the cell centre. Thus, 

z R, . R,E, 
.i I (kt61JZ) 

~~~~R,.RI]~-,,~.~(EK,,.,.-&K.~) (45) 
6k J 

and 

4 R, . R,E, 
I 

1 - 
+- 

(k t 6/c/Z) IL 
c R, . R,E, 

2 j 1 Kt !.JZ.L- Y2 

f [~Rk*R,c~]K+V2., -,,2 13 (46) 

where 

g R, . R,E, 
.i 1 K t V2.I. t V2 

=+ [~Rk’R,]K+,,2,Lt,,2 bKtl,Lt, +&K.L+I -EK+l,,.-EK.Lh (47) 

The difference (46) gives weight across the face (It 61/2) to quantities evaluated at 
the corners. In view of this it would be consistent to evaluate the coeffkient term in 
(45), using comer values, i.e., 

Kt 1:Z.I. =+ 1 [qR’* R’],,,,,.,+,,,+ [$R”R’]K~,,2 ,,.- ,,,I* (48) 
The differences for the other faces are evaluated in an identical form. Hence we 
obtain 

CA vhK,,.,,,KJ,, += (K.L).(K’.L’) ‘K1,/.1* 
(K’.L’) 

(49) 
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where the volume of the celi VCK,L)+lK,L) = (I??),~, Sk 61. The matrix B is more 
conveniently expressed in terms of derivatives with respect to the variables K and I?, 
rather than k and 1. whose Jacobian J =j 6k 61: 

B '. -B 
1 - 

(K, l,I.).(K,L) - (K.r.),(Kt 1.1.) = - 2 I[ 
7 R, s R,. 

I (Kt l/2,1. f I.21 

+ TR,-R,, 
L I WA l/?,L - 1:2) I 7 

B 1 7cR 
(K+l,L.LI).(K.L)=B~k.L~.~X+I.Ltl)=-- -RK.RL 

2 [ J I (K- l/2 ,I. t l/2) ) 

B -B (K-1.r.a I).(K,f) - (K.L).(K - 1.L + I) = 
(K - 1.2.1. 4 1:2j * 

(5’3) 

where R, = aR/ZK, etc. The matrix B being symmetric, and conservative, the set B is 
fully specified with 

and all other elements zero. The matrix B is readily shown to give a consistent 
representation of Eq. (44). 

The matrix B is non-positive definite for the sum (A2.16) of Appendix 2 and may 
be written: 

t.52: 
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Since 

U(Eo - E*y + b&f + C(E, - E$ + b(E” - &J2 + ae: - ce: 
2(&J-cZ) 2 

G (a + b + 2c) Co 

provided (a + b + c) > Ic j. Hence since 

0% e R,N% . RL) 2 (R, . R,,)’ 

and 

(53) 

(5% 

it follows that 

(E, BE) < 0. 

The matrix B is not an M-matrix since: 

B (K.L)(K+ IL+ 1) = - B (K+ ,,L).(~.LL ,), (54) 

one of these terms being negative depending on the sign of (R, . R&+ ,./z.L- ,/2j in 
agreement with Kershaw’s theorem [ 2 ] for consistent representations. Examination of 
Eq. (50) shows that these terms represent flux transfer across the corner of the cell 
(K + 4, L + f) between cells (K, L) and (K + 1, L + l), or (K + 1, L) and (K, L + 1) 
only, the transfer being such as to reduce the temperature difference if the element is 
positive, but to increase it if negative, i.e., a negative element Biqj corresponds to a 
local anti-diffusion. In general, anti-diffusion is not extremal. A general approach to 
extremum limited anti-diffusion has been devised by Boris and Book [ 111 to correct 
spurious diffusion introduced by numerical advection. Thus, given an anti-diffusion 
flux between two cells i and j, qi,, such that 

Vii&, = V,jS~ - ~ijij, Vi/&j = VjjEjo + ~ij (55) 

which is required to be locally extremal with respect to the neighbouring set of values 
ti and rj, respectively. Such an extremum limited flux is 

where S is the sign of Gjj. 
As noted earlier it follows from Theorem 2 of Appendix 2 that the form B is 

extremal if the time-step Ar is sufficiently large. We may obtain a sufficient condition 
for monotonicity by the use of Theorem 3 of Appendix 2, and by noting that the 



matrix, B. may be 
Appendix 3 where 

and 
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written as the sum of corner matrices of the type discussed in 

u, = +$AtR,, . R,, 

1 KR 
uz =TJAtR,. R,, 

(57) 

p,=+-$f-A*R,.R,,. 

Each of which yields a monotone implicit form if the conditions given in Appendix 3 
are obeyed. In general, these are not restrictive unless At is small, in which case the 
error incurred by using an explicit form for any of the terms is small. We therefore 
propose the following algorithm which has worked well in practice: 

Test each corner matrix for monotonicity. If unsuccessful remove the appropriate 
anti-diffusion term from B setting appropriate elements to zero, and treat the 
corresponding flux explicitly using extremum limited flux (56). Solve the resuitant 
matrix equation fully implicitly. This complete operation is clearly extremai. 

An equivalent finite difference form for this problem has been elegantly devised by 
Kershaw 12) using a variational approach, and is also non-positive definite. The 
present approach appears to have two main advantages. Firstly the use of corner 
differencing allows a relatively simple condition for monotonicity to be identified, and 
if not satisfied a self consistent remedy to be adopted; and secondly no square roots 
are introduced. In essence the above matrix form of B is identical to that of Kershaw 
differing only in the way in which the interpolated values of the diffusion coefficient 
are calculated, the form of solution using nine point 1.C.C.G. 15 ] being the same. As 
a result WC have found very little difference between calculations using the above 
matrix B or Kcrshaw’s form [ 21 with its well-known advantages i 121. In order to 
compare these two matrix forms we have performed test calculations on skewed 
meshes. such as those in Fig. 1, as suggested in Ref. 112). In Figs. 2 and 3 we show 
such calculation for a small 18 x 24 mesh in which a “temperature” difference of I 
unit is applied across the mesh, with open boundary conditions in the 2 direction. 
and reflecting ones in R. The diffusivity was uniform of value 1 unit. The mesh forms 
a square of 1 unit side. The time-step used was 10. ‘. The initial value of c within the 
mesh was 0. Figures 2 and 3 show the contours of E after 50 time-steps, by which 
time the steady state is reached. The analytic solution has contours c = 2. As can bc 
seen both finite difference forms give a remarkably accurate representation of the true 
result, with the balance slightly in favour of the form B given in Eq. (50). 

In practice the failure of the monotonicity conditions, and the inclusion of the 
extremal limit are only rarely important when the mesh is greatly distorted and At is 
small. The value of this procedure lies in naturally preventing the occasionai 
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FIG. 1. Plot of the non-orthogonal mesh used in the calculations of Figs. 2-4. The mesh has 18 x 24 
cells and is square of side 1 unit. A “temperature” value of I unit is applied at the right hand boundary 
and a value of 0 at the left hand boundary. The upper and lower boundaries arc non-conducting. 

appearance of negative energies in thermal diffusion problems, which must otherwise 
be reset by some ad hoc prescription such as a “zero fix-up” to prevent the 
programme “crashing.” 

A word of caution concerning the use of the extremum limited anti-diffusion flux is 
appropriate. If the algorithm is used without the monotonicity check, and the 
extremum limited flux always used, the resultant scheme is still stable and extremal, 
but the steady-state solution (i.e., the vector E which reproduces itself when it is anti- 
diffused and then diffused with the M-matrix residual part of B, or vice versa) is now 
dependent on dr, and as Al increases, this new steady state diverges further from the 
correct one. Thus as the time dependent solution approaches the steady state and Af 
is allowed to increase the solution gets progressively worse. Indeed on general skewed 
meshes with (dt)- ’ small compared to all the terms (A - ‘B)ij the extremal limited 
solution departs markedly from the correct one, as shown by the example of Fig. 4. 
In particular as At + co the implicit part of the calculation produces a constant 
steady-state answer, but @rj --f co, so all the E’S get set equal to the largest or smallest 
(depending on the sign of i,j) of their neighbours. In fact the extremum limited 
solution is only satisfactory if (At)- ’ > Max{!@ - ‘D)i,/}.” This effect is avoided by 
the monotonicity check, and the use of the explicit anti-diffusion extremum limited 
flux only when the rates are small. 

’ I am indebted to the referee for this analysis of this condition. 
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FIG. 2. Contours of constant E generated in the steady state by the finite difference solution using t!ie 
matrix B, Eq. (XI), after 50 iterations with time-step 0.1. The exact solution is given by the lines E -= Z. 
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FIG. 3. Isotherms as in Fig. 2 generated by Kersbaw’s [2] matrix form. 
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0.2 0.4 0.6 0.6 1.0 
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FIG. 4. Isotherms as in Fig. 2 generated by the extremal algorithms with no monotonicity check. 
Note the strong departure from the correct solution. 

WEIGHTED FORMS 

For small time-steps, At, the most accurate integration is given by a centred time 
difference, 8= i, which is second order accurate. On the other hand, for large time- 
steps centred-difference integration oscillates, and gives rise to appreciable errors. In 
contrast the fully implicit scheme, 6’= 1, converges uniformly to the final steady state 
and provides a more accurate representation for large time-steps. For intermediate 
time-steps there exists a set of weights cvii such that 

E = (A -D, At]-’ [A t D, At] co, (58) 

where D, and D, are matrices such that 

D,, = WijDi, for i#j, 

D, fD,=D, (59) 

where the weight Wi, satisfies ) Q W, < 1. In principle the weights could be chosen 
so as to coerce the finite difference form to the exact integration. Such an approach is 
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extremely difftcult, and involves an a priori knowledge of the solution before the 
weights are determined. We may however note that the term 

essentially determines the relaxation rate between the elements ci and E;. The weight 
W, determines which time level of cj to use in calculating E;. Clearly if ci and cj 
rapidly relax a near steady-state distribution will be maintained between them, i.e.. 
w, z 1. On the other hand, if the relaxation is weak, the appropriate weight is 
Wjjz i. giving highest order accuracy. Thus the weights are assumed to take the 
form 

wij = F(i+,), 

where 

,i,= {(IVDV-‘A-‘),+ (VDV-‘A-‘]j,)At) 

[ = ((A -‘D)i, + (A -‘D)ji) At if (VD) = B is symmetric] (60) 

F(i) = j if ii=0 

= 1 as L--+ co. 

Such a form is obtained for a two element system for which 

(61) 

F(L) = l/( 1 - exp(-A)} - I/,! (62) 

coerces the finite difference form to the exact analytic solution. 
In the more general case we may require F(l) to be of a form which maintains the 

physical properties of the solution. For example, if D can be differenced in an 
extremal form, we may require the solution of (58) to be extremal. Thus in the case 
both D, and D2 take an M-matrix form, 

I(.4 -‘D,)iii At < 1. (63) 

The element (D,)ii is evaluated from the condition that (58) be conservative, name$, 
that both D, and D, are separately conservative. if the weights W, are independent, 
i.e., 

(VDl)ii=-\‘ (vDl)ji. 

Examination of the exact two element weights (62) shows that as A --* a~, the weight 
W + 1 - l/A and suggests that a similar form 

W, = Max{+, 11 - ~,/‘cz~,~&,]~ (65) 
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is appropriate in the general case. In comparison with the two element case, or on 
physical grounds we may expect that the weight is symmetric Wjj = Wji, in which 
case Eqs. (63) and (64) show that the minimum value of the constant aij sufftcient to 
ensure an extremal solution is given by 

aij = aji = Max(N,, N,), (66) 

where Ni and N, are the number of neighbours of i andj, respectively. 
This term is identical to that proposed in Ref. [6] for weighting the solution in the 

similar problem of integration of a set of conservative, positive rate equations. Indeed 
we may establish this equivalence by writing Eq. (10) in the form 

-&v+(vDv-‘A- ‘)(AV&). (104 

When D is the negative of an M-matrix, these form a set of conservative, positive rate 
equations in the conserved variables (A Vc) (Eq. (14)) with transition matrix 
(VDV- ‘A -I). We note that the matrix is not differential in this form. In view of this 
equivalence we may expect that the performance of this weighted solution will be the 
same as that described earlier, a result confirmed by numerical tests. We may 
therefore refer to Ref. 161 where a detailed discussion and numerical tests of the 
performance of this weighted solution are given, and its merits compared with those 
of alternative forms. 

As shown in Ref [6] the weights given by Eqs. (65) and (66) allow a marked 
improvement in the overall accuracy of the finite difference form over more simple 
differences, whilst retaining the desirable physical properties associated with 
positivity maintenance. However, the numerical tests in Ref. 16 J show that the finite 
difference solution generally converges more slowly to the steady state, as the step 
length dt is increased, than the exact solution, due to weighting too close to the fully 
implicit solution. In the general case when B is not symmetric no further 
improvement of the form (65) which maintains positivity can be made. 

In the case of a isotropic medium the symmetry of the matrix B introduces a relax- 
ation of the positivity condition (66), namely, that the weight Wij = Max{& ] 1 - 
I/(czij%ij)]) is positivity maintaining if 

a// 2 Njl(l + Mj/“i)* (67) 

where M, = (A V)i, is the “mass” of cell i. 
Let us consider the related family of weights 

W,= 1 -(l -&Vj/[(N+ l)B,dt] (68) 

for a symmetric system in which each cell has N neighbours. The value of aij 
corresponding to this weight is 

aij = & (N + I)/(1 + Mj/"t), 
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/? is an adjustable constant. For this set of weights the finite difference equations 
reduce to 

\’ B, At@, - Ej) =pMi(Ei -- EP). (70) 
,Ti 

whose solution satisfies 

&(J, At) = E( 1, At/P). (71) 

the case /? = 1 corresponding to the fully implicit scheme. In particular the case [I = 0 
has the remarkable property that the solution yields the steady state independently of 
the initial state co. Comparing (69) with (67) we see that the weights (68) are 
positivity maintaining if /Y >, - l/N. 

The weights (68) may be put into a form which satisfies (61) and is suitable when 
Xi is not constant for all elements given by (65) with 

aij = & (Nj + I ) / (  1 + M j /M , ) .  (72) 

This form of weight is not symmetric, and will be referred to as the asymmetric form. 
The equivalent symmetric form is given by (65) with 

We expect on physical grounds that the symmetric form should be preferred. as 
discussed earlier. In addition with symmetric weights, the matrix equation remains 
symmetric which allows a symmetric form of matrix inversion to be used with a 
substantial reduction in the overall C.P.U. time. 

In order to assess the performance of these weights an extensive series of tests were 
carried out in which the matrix equation 

MdC z = -B’E. (74) 

was solved by a single weighted implicit time-step, At, and the results compared with 
an accurate solution calculated by Gear’s method (13 1. In these tests B’ was a 
differential, conservative symmetric M-matrix form. In general, as may be expected. 
the most severe tests were those in which all the masses and rates had the same order 
of magnitude, and the rate parameters 1 of order unity. Figure 5 shows the resuits of 
such a typical test under these extreme conditions. B’ was a dense 10 x 10 matrix 
with off-diagonal elements in the range O.l-l.O1 and cell “masses” in the range 
0.1-10.0. The initial conditions were E, = 1.0 and ei = 0.0 (i # 1). The graphs show 
the values of E, (which showed the largest error) as functions of the time-step, A:. 
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FIG. 5. Comparison of the finite difference solution of the set of conservative, positive rate 
equations : M,(&,/df) = -xB:j~, for various step lengths, dt. with the exact solution (full line) 
calculated by Gear’s method [ 13 1. The calculation involves a set of 10 components, with B’ a dense 
symmetric (Bij = Bji) matrix (N = 9) with off-diagonal values in the range 0. I-1.0, and cell “masses” Mi 
in the range 0. I-10.0. The initial conditions were c, = 1.0. ci = 0.0 (2 < i ( IO). The finite difference 
calculations were performed with both asymmetric (dotted curves), W,j = Max{{, [ 1 - 
(I - 0) Mj/( lOB;,d~)] }, and symmetric (dashed curves) weights, Wii = Wj, = Max{& ] 1 - (1 -,6) 
Min(M,, M,)/(lOB;jdr)J], for various values of p. We note that the cases p = I, p = 0. p = -$ 
correspond to the fully implicit, steady state and limiting positivity maintaining solutions, respectively. 
The values of the component, cl, only have been plotted since this term shows the largest error. WC note 
the improved performance of the asymmetric weights. 

calculated for asymmetric (72)-dotted curves-and symmetric (73)-dashed 
curves-weights for values of p in the range -l/N to 1. 

Examination of Fig. 5 shows several results typical of these tests. The asymmetric 
form is clearly superior to the symmetric, but the latter may be preferred for the 
reasons given earlier. The value p= 0 for the asymmetric case gives a remarkably 
accurate representation, but in the symmetric one the positivity maintaining form is 
generally superior where 

aij = aji = Max{N,/( 1 + M,/M,), Nj/( 1 + Mj/Mi)}. 

The inclusion of these weights into a calculation where the diffusion matrix can be 
cast in an M-matrix form is extremely simple, and requires little computational effort, 
yet as the calculation in Fig. 5 can lead to marked improvement in the accuracy of 
the calculations in the case where At is neither large nor small. In the case that B 
does not have an M-matrix form such weighting is not generally possible since only 
the fully implicit form can be made extremal. Nonetheless when the M-matrix terms 
dominate as in the matrix (50) it may be possible to weight these terms, but such a 
procedure will probably not lead to a significant increase in accuracy, unless the 
residual terms are all small. 
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We may remark that the stability analysis given earlier only holds if the weights 
are all equal. Sets of weights, which are extremal, are by definition bounded, and 
therefore stable. 

CONCLUSION 

The general properties of the diffusion equation have been examined. and it is 
shown that the diffusion operator is differential, conservative and non-positive 
definite. Each of these properties is the equivalent of an important physical Law; for 
example, in the case of thermal conduction, the conditions differential, conservative 
and non-positive definite correspond to the zeroth, first and second laws of ther- 
modynamics. respectively. In addition the diffusion equation is shown to satisfy an 
extremal condition which is the mathematical expression of the familiar phsyical 
picture of diffusion involving the progressive smoothing of extrema 141, and 
furthermore ensures the essential positivity of the phenomenon. The extremai 
condition is closely related to, but more restrictive than the non-positive definite one. 
In the past finite difference schemes for the calculation of diffusion have considered 
the significance of the first three conditions, namely, differential, conservative and 
non-positive definiteness, but little attention has been paid to that of the extremum, 
despite its physical significance. 

The essential linearity of the diffusion equation implies that the spatial finite 
difference representation of the diffusion operator must take a matrix form, whose 
structure is consistent with that of the operator. It is furthermore natural to require 
that the essential physical properties of the operator be retained by the matrix, 
namely, that the matrix be differential, conservative, non-positive definite, extremti... . 
General conditions on the matrix form may be derived. In particular if the matrix 
differential equation is extremal, the matrix must be negative of an M-matrix form. a 
condition which may not be possible to satisfy if the representation is consistent 12.;. 

In practice, we shall also perform the temporal integration by means of a finite 
difference form. The conditions of differential, conservative and stability 
(corresponding to non-positive definite) may be ensured if the differencing is two-step 
with an implicitness parameter, 8, in the range i < 6’ < I. Furthermore if the diffusion 
matrix is the negative of an M-matrix form, the differencing may be extremai. This 
suggests that the differencing be made extremal, by means of a suitable weight 
function in such a fashion that for small time-steps the differencing is spiit-time-step 
and for large ones fully implicit. Such a weight has been derived for the related 
problem of a set of positive rate equations, and found to markedly increase the 
accuracy of solution, with little extra work. 

In order that the temporal difference be extremal, it is convenient to ensure that the 
diffusion matrix take a negative M-matrix form. Two examples are given in which 
this is not the case. In the first this is associated with advection-like terms 2~/2~. etc.. 
and an M-matrix form can be recovered by upstream or downstream differcncing to 
ensure convergence to the appropriate neighbouring value of E 110;. No such simple 
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remedy is available in the second case associated with a term of form 2&*/&k 21. By 
differencing the problem in terms of fluxes, the departures from an M-matrix form 
can be identified as fluxes enhencing the term difference, i.e., anti-diffusion fluxes. By 
retaining the flux form, we may devise a condition under which the solution is 
extremal, outside this limit we may conservatively treat the monotone terms 
separately in the usual way, and use an extremal form for the anti-diffusion fluxes, to 
obtain an operation which is overall extremal. Since the only remaining terms in the 
diffusion operator are, of the type 2&*/2z*, which readily difference in an M-matrix 
form, it is believed the above methods will allow any general diffusion operator to be 
differenced in an extremal form. 

It is a direct consequence of the definition (9) that the development of an extremal 
operator is bounded, and therefore stable [ 11. In consequence we may deduce that an 
extremal form is always stable, irrespective of any temporal or spatial variations of 
the coeffkients K,~, rcI and K,, . Furthermore it also follows that repeated application 
of the operation will converge uniformly (in respect to the maximum norm) onto the 
uniform equilibrium state 16). 

In the present analysis it has been assumed that the boundaries are impermeable. 
In general, boundaries on which the value of the parameter, E, is specified may also 
occur. In this case, the general conclusions reached as to the matrix form of D remain 
unchanged, although the extremal condition must include the boundary values, as 
well as those at an earlier time, as in Eq. (9). 

APPENDIX 1: PHYSICAL CONSTRAINTS ON THE DIFFUSION OPERATOR 

Any solution of the diffusion equation must obey the second law of ther- 
modynamics which implies that the total entropy in a closed volume, V, must 
increase in time. In accordance with Onsager’s theory it follows that any diffusion 
process is described by an appropriate thermodynamic equation of motion 1141 
relating the flux q to an appropriate force X: the force X being related to VE by 

x = PVC, (AI.l) 

where p is a real, positive function. The entropy production rate per unit volume is 
then given by 

T@=X.q (A1.2) 

where T is the absolute temperature. Hence since P = p/T is a real positive function: 

VE. E. VcPdV>O. (A1.3) 
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If VP is not parallel to GE, this condition is only satisfied for all fields, E, if diffusion 
is non-negative in the sense 

!, A.F.A~V>O (A1.4) 

for all vector fields A. In the case that P is a function of E only, so that VP is parallel 
to VE, this condition takes the simpler form that the diffusion operator must be 
nonpositive definite in the sense 

-jvt:.K.~Ed~=rELi;(E)dV~~ (A1.5) 
., 

for all functions c. This condition is of course necessary in the general case. 
Since the eigenvalues, 1, of the operator 2 given by 

GA = %A (A1.6) 

have real parts, Re(l) < 0 when the operator is non-positive definite. the above result 
ensures that the solutions are mathematically stable for forward going time. The 
entropy production rate 

6= (_ VE.F.VEPdV=/‘VE.)(,.VEPdV (A1.7) 
-’ v i 

depends on the symmetric part of the diffusivity tensor Falone, and therefore on the 
symmetric part of the operator D. The symmetric component therefore represents an 
irreversible evolution, the anti-symmetric part being reversible. It foiiows that the 
principal components of the symmetric parts of the diffusivity tensor K , K- must be 
positive. 

Expanding Eq. (1) to (3) into component form we see that Eq. (1) is a parabolic 
equation in space and time provided &ji;t > 0 everywhere. In this case it follows 
from the maximum theorem 131 that the function, E. cannot have a positive maximum 
in the space (c, t) except on a boundary in time, t,, or space S. In other words if a 
positive maximum exists in the initial data, or at a spatial boundary it will decay in 
time. In the important case that a is constant, we may extend the result to include 
minima by considering the function 

&’ = Cmax - E. (A1.8) 

where c,,, is the supremum of all values of E. Clearly in this case E’ also satisfies 
Eq. (I) and has positive maxima at the minima of E. Thus if a is constant all spatial 
extrema decay in time. A slightly weaker condition is 

Max(e(t,). &,,I > MaxIe(r)j > Min\e(r)! 

> Min[ e(to). ch j. 

(Ai.9) 
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where t > t,, Max and Min are the largest and smallest values of the set denoted 
respectively, and E* the boundary values of E during the interval t, to t, respectively. 
We shall call this the extremal condition. 

When a is not constant the behaviour of E at an extremum can be clearly shown, 
for at a spatial maximum of E, VE = 0 and V% < 0 and 

n 

5 (a&) = V a (K . Ve) = K!!V,,E~ + K- vt& < 0 (A1.lO) 

and the function (as) decreases. Similarly at a minimum (a&) increases. 
An operator G(E) is called extremal if the solutions of the equation 

W = Gk(fo)- ~1 (Al.1 1) 

satisfy the extremal condition. It can be shown that an operator is extremal if and 
only if it is both differential and monotonic in the sense that if E and 6 are two sets of 
the variable such that if Min(c) > Max(G) then Min(G(E) J 2 Max[G(6)]. When G is 
linear this monotonicity condition is equivalent to that of non-negativity in 
Eq. (Al.1 1). 

APPENDIX 2: MISCELLANEOUS MATRIX THEOREMS 

LEMMA 1. A d@erential (or conservative) matrix, a, is singular: for the deter- 
minant 

alI a,, ..+ 0 0 . ..I 
a=* a,, a22 = 

I 

a2, a,, 1 =O* 
(A2.1) 

LEMMA 2. A non-positive definite real matrix B has eigenvalues, A, whose real 
parts satisfy Re(,I) ,< 0. 

Let /i = @ + iY be an eigenvector of B with eigenvalue i, = 4 + iv. Then 

(/i*,Bn)=~(/i*,n)=(~+iW)[(~,~)+(’Y v)] 

= [(@,B@)+(Y,BYj] +i[(@,BY)-(y,B@)I, 

Re(il) = 4 = I(@, B@) + (Y, Byl>]/[(@. @) + (K y?j < 0 (A2.2) 

since B is non-positive definite. 

THEOREM 1. A matrix (M- B), where M is a real, positive diagonal matrix 
(non-null) and B is a non-positive defmite real matrix, is non-singular. 

Since the matrix (M-B) is positive definite it follows from an identical proof to 
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Lemma 2 that the eigenvalues of (M-B) have positive non-zero real parts. Hence 
the determinant of (M-B) is non-zero and positive, for since (M-B) is reai the 
eigenvalues must be either real positive or occur as complex conjugate pairs. 

LEMMA 3. [f a is a differential and conservatice matrix, aii the co-facrors la;,, in 
the determinant of a are equal. 

Consider the determinant 

Ia,, aI2 . . . 

Ia,, 

) ) a,, aI2 . . . 0 ... aii .*.I 

I * ,=I,, aii*l ..I. II . . . 1 . . . 

I 1 /I 

uiitl -.. 
1 

= lali,, (A2.3) 

where the column j is arbitrary, since a is differential. Similarly since a is conser- 
vative. the value of the co-factor, is independent of i. 

THEOREM 2. if a is a differential and conseroatice matrix, then the matrix 
(&f - a) where M is a real, positice diagonal matrix, is monotone for sufficienr/& 
small M. 

The determinant 

IM, -a,, -a,, *.a 

I -h Ml -all . . . 1 = -L’ Mi la!ii t O(M,M,) 
T 

(,A2..4) 
* I 

since by Lemma 1, a is singular. The co-factor of the element g is 

!M - ali,i = -ialij + O(M,). t.42.5) 

Hence making use of the results of Lemma 3 the inverse matrix is given by 

([M-a]-‘)ij=&+ O(1). 
LI I 

(A2.6) 

The solution thus obtained corresponds to the steady state of a differential, conser- 
vative process : 

where 

(A2.8) 



48 G. J. PERT 

hMMA 4. If a is a differential matrix, then the inverse non-singular matrix 
[I - a]-’ satides 

7 [(I--a)-‘],= 1. (A2.9) 

For if a is differential then 

ci=C [(I-a)];‘$ 
j 

(A2.10) 

and si = so = s.i if all .$ are equal,and the result follows. Alternatively, the deter- 
minant 

1 
1 -all -aI2 ... 

= 2 ]I - a jij for arbitrary i, 
1 

(A2.11) 

where (I - aJij is the co-factor of the element ij in the determinant (I - a ( of I - a, 
and the result (A2.9) follows directly. An equivalent result for a conservative matrix 
is readily proven. 

LEMMA 5. If a is a dl@erential (or conservative) matrix, and the inverse matrix 
[(I - a)- ‘1 is monotone, then the transformed matrix 

a’=(I-a)-‘a=(I--a)-‘--1 (A2.12) 

has a negative differential M-matrix form. 

Since (I-a))’ is monotone a:= [(I-a)-l]ij>,O and a!i= [(I-a)-‘]ii- 1 = 
-Cj~i ai < 0. 

COROLLARY. (I - a’) is monotone. 

The following matrix identities are readily established : 

[I - (a, + a,)] = (I - a,)(1 - a: a:)(1 - a2) 

and 

(A2.13) 

[I-a,a,]=(I-a,)[l-(a:+a:)](I-a,), (A2.14) 

where the superscript 1 represents the transformation (A2.12). Hence 

[I- (a, +a,)]-‘= (I- a&-l (I--a:)-’ [I-(a~‘+a~l)]-’ (I-a.:)-‘(I-a,)-’ 

(A2.15) 

and the following theorem is a direct consequence of Lemma 5. 
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THEOREM 3. lf a, and a, are diflerential (or conservative) matrices and (I -- ~1, j 
Qnd (I- aI) are monotone then (a, + aI) is drjj’jerential (or consercatiw) L!ul!l’ 
jl- (Q, + a,)) is monotone. 

This theorem may be obviously generalised to a set of matrices a,. a? I.. of the 

above type. for which (1 -- ai) is monotone. 

cONDlTlON 1. A differential. conservative matrix. B, is non-positive definite if 

(c. Bc) = 2 CiBijCj 
ij 

= 2 Ei x Bjj(&j - EJ 
i .i: i 

= >’ cj 2 B,(a, - cj) 
T iij 

=- $1 \‘ Bij(ci - i-$ 
j ;Tj 

= - 4 1 x (B, + B,,)(c, - c~)’ < 0 
j ijj 

(AZ.!6 j 

for all values of ci. The condition xi* j(Bij + Bji) > 0 or Bil < 0 is clearly necessary 
and (Bjj + Bji) > 0 sufficient. 

APPENDIX 3: THE CORNER MATRIX 

We define a corner matrix, associated with the corner (K + i, L + $) @f :he 
Lagrangian mesh, with non-zero components only between the cells 1, (K+ i); 2, 
(K + f.L): 3. (K + 1,L + 1) and 4, (K,L + 1) as the form 

i 

Ml+(a,+a2-Pl) -aI P, -a2 \ 

b= 
-a, M,S(a,fa2+B,) -a2 4, 

P, -a2 M3t(aI+a2-PI) -aI 

-a2 -131 -aI -~,+(a,+a2tP,) 
(A3.1) 

which we may write more compactly as 

h, = -a, bi, =P, b,, = -a ‘, bii = Mj + (a + a* - /3), (A3.2) 

where the sequence (i,j, k, 1) is taken cyclically around the cells (1, 2, 3,4), Mi is the 
cell “masses” (=A ii Vii) and 

a =a,, 1 a =a2, P=P, if i is odd, 

a = a2, 1 a =a,, P= -P, if i is even. <A&3.3) 
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The matrix equation 

be = A4d’ (A3.4) 

is clearly both differential and conservative. 
It follows from Theorem 1 of Appendix 2 and the non-positive definite nature of 

(M - 6) that b is non-singular and its inverse is thus, 

(b- ‘Iv = Iblijllbl, (A3.5) 

where 161, is the co-factor of the element ij in the determinant of b, (b j. The deter- 
minant 

ibl=M,MzM,M, +MzMdM1 +Md(a, +a, -P,) 
+ WKW, + W(a, + a2 + B,) 
+ M,M3[(a, + a, +A)’ -Pi] + M,M,((a, + a2 -PI)’ -PiJ 
+ (M,M, + M#J[(a, + a212 - 4 -El 
+ W,M, + M,M,)l(a, + a212 -a: -PTl 
+ W4, + M, + M, + Md(a, + a2)(ala2 -i-t>. (A3.6) 

In accordance with Lemma 1 of Appendix 2, / 61 = 0 if M, = M, = M, = M4 = 0, and 
in view of (53a), (b( > 0 if not in accord with Theorem 1. 

The co-factors can be conveniently written in. terms of the cyclic parameters 
(i,j, k, I) as in (A3.2). 

(b/i’ = M,M,M, + M,M,(a + a’ - /?) + M,(Mj + M,)(a + a’ + P) 

+M,[(a+a’)2-a2-/3ZJ+M,[(a+a’)2-a’2-~2[ 

+ M,[(a t a’ +@‘I t 2(a t a’)(aa’ -D2). 

~b~,j=M,M,a+(ata’)(M,(a-/?)tM,(at~)J 

t 2(a + a’)(aa’ - /3’). 

1 b 1, = -MiM,P t (Mj t M,)(aa’ - (a + a’)P - 8’) 

+ 2(a + a’)(aa’ - p’). 

lb(,,=MjM,a’ t (a ta’)(M,(a’-a) tM,(a’+P)] 

+ 2(a + a’)(aa’ - p’). (A3.7) 

In accordance with Lemma 3 of Appendix 2 we note that all the co-factors take the 
same positive value 2(a + a’)(aa’ -p2), and the inverse 6-l is therefore positive 
(Theorem 2) as M, + 0. Furthermore in accordance with Theorem 1 the diagonal co- 
factors are always positive and therefore (b-l),, > 0. 
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The departure from monotone character of the matrix b is shown by negative 
values of the off-diagonal elements of b-l, and is a result of the anti-diffusion terms 
/3, with positive sign. This causes problems with both the diagonal (across corner) 
elements /b iik and, less expectedly, the direct (across face) ones / b iti and /b Ii,; the 
latter are, however, in general less restrictive. The physical explanation of these 
effects is straightforward: 

(a) 1 biik < 0. Suppose E: = E; = E: = 0, E: # 0 and suppose M,, M4 3 a, ) a2 ; 
then the flux through the faces 2/3 and 3/4 does not markedly increase a, or sq from 
zero. The flux from 1 is thus dominated by the anti-diffusion flux to 3 decreasing ci 
below zero. 

(b) \b\, ( 0. Suppose E; = E; = E! = 0: E(: # 0 and suppose M, 9 M, and 
a2 s-p,, a,. Rapid flux transfer increases .sj across the face 2/3, giving rise to the 
anti-diffusion flux 1 to 3 decreasing s1 below zero. Little compensating flow across 
face l/2 occurs due to the small value of a,, or across l/4 due to the large mass of 4 
(keeping E, small). 

It is evident from consideration of the co-factors (A3.7) that they only assume 
negative values if the values of M are large compared to the Q? /I coefftcients, in 
particular if M 2 (a, + a*). Examination of Eq. (49) shows that this parameter is the 
Taylor expansion parameter, i.e., the failure of the monotone character of b occurs 
for the same values of dt for which the explicit treatment may be used. We may alSo 
note that the onset of non-monotonicity may be inhibited if the cell masses M, are 
nearly equal. 
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